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PARTICLE INTERACTIONS IN OSMOPHORESIS 
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Abstract--An exact analytical study is presented for the osmophoretic motion of two spherical vesicles 
in a constant solute concentration gradient arbitrarily oriented with respect to the line of vesicle centers. 
The vesicles may be formed from different semipermeable membranes, contain arbitrary solutes and have 
unequal radii. The appropriate equations of conservation of solute species and fluid momentum are solved 
in the quasisteady limit using spherical bipolar coordinates and the translational and angular velocities 
of the vesicles are calculated for various cases. The interaction between vesicles can be strong and peculiar 
when the surface-to-surface spacing gets close to zero. The influence of the interaction, in general, is 
stronger on the smaller vesicle than on the larger one. For the osmophoresis of two identical vesicles along 
their line of centers, both migrate slower than the velocity they would possess if isolated. On the contrary, 
for the case of two identical vesicles undergoing osmophoresis normal to their line of centers, they migrate 
faster than their undisturbed velocity except when the two vesicles are very close together. A comparison 
between our exact results for osmophoretic velocities and those evaluated from asymptotic formulas 
obtained using a method of reflections is made for a case of two identical vesicles. The asymptotic formulas 
for the vesicle velocities up to O(r~6), where rm2 is the center-to-center distance between the vesicles, are 
found to underestimate (for the axisymmetric osmophoresis) or to overestimate (for the transverse motion) 
the effect of particle interactions; the error can be significant when the vesicle surfaces are less than half 
the vesicle radius apart. Our numerical results for the interaction between two vesicles are also used to 
find the effect of the volume fraction of vesicles on the average osmophoretic velocity in a bounded 
dispersion. 

Key Words: osmophoresis, semipermeable vesicle, particle interaction, spherical bipolar coordinates, 
effect of volume fraction. 

I N T R O D U C T I O N  

The existence o f  a solute  concen t ra t ion  grad ien t  in an u n b o u n d e d  solvent  does  no t  by i tself  genera te  
an  apprec iab le  vo lume flow. However ,  when two solut ions  differing in concen t ra t ion  are  separa ted  
by  a semipermeable  membrane ,  i.e. a m e m b r a n e  tha t  permi ts  the passage o f  solvent  but  no t  o f  
solute,  it  is observed  tha t  solvent  a t  the side o f  lower concen t ra t ion  tends to pass th rough  the 
m e m b r a n e  into the so lu t ion  o f  higher  concent ra t ion ,  and  thereby dilute it. This  behav ior  is called 
osmosis .  The  osmot ic  flow of  solvent  can be prevented  by  app ly ing  a pressure to the so lu t ion  o f  
high concen t ra t ion  which is greater  than  the pressure on the solut ion at  the o ther  side by  an a m o u n t  
equal  to the difference in osmot ic  pressure  between the two solut ions.  

The  fluid veloci ty  no rma l  to a semipermeable  m e m b r a n e  is usual ly  charac ter ized  by the equa t ion  

Vn = L p ( , ~ n  - A P ) ,  [1] 

where A P  and  A/7 are the differences in mechanica l  and  osmot ic  pressures across  the membrane ,  
respectively,  and  Lp is the hydraul ic  coefficient which is a cons tan t  for  a given m e m b r a n e  and  
solvent.  F o r  an ideal  so lu t ion  (with very low solute concentra t ion) ,  the osmot ic  p r e s su re /7  is re la ted 
to  the solute  concen t ra t ion  C by  the van ' t  Hof f  law: 

n = R r C ,  [2] 

where  R is the gas cons tan t  and  T i s  the abso lu te  tempera ture .  In  general ,  H is a non- l inear  funct ion 
o f  C at  fixed tempera ture .  

W h e n  a vesicle, which is a b o d y  o f  fluid su r rounded  by  a semipermeable  membrane ,  is p laced 
in a so lu t ion  o f  uni form,  bu t  pe rhaps  different,  concen t ra t ion  o f  impermeab le  solute,  the m e m b r a n e  
in terchanges  solvent  between the in ternal  and  external  solut ions  unti l  an equi l ib r ium cond i t ion  is 
reached such tha t  P i . -  Po.t = /71 . - / - / ou t .  On  the o ther  hand,  i f  the external  concen t ra t ion  is 
non-un i fo rm,  one pole  o f  the vesicle sees a higher  solute  concen t ra t ion  (and hence a higher  osmot ic  
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pressure) than the opposite pole. According to [1], a driving force causes solvent to cross the 
vesicle's membrane from inside to outside at the high concentration pole, and from outside to inside 
at the low concentration pole. The vesicle thus acts as a micro-engine, sucking fluid into it on one 
side and ejecting fluid on the other, thereby advancing toward regions of low concentration. This 
movement of the vesicle by osmotic force is termed "osmophoresis" (Gordon 1981; Anderson 1983) 
and provides a mechanism for the motion of biological cells in response to chemical gradients, a 
phenomenon known as "chemotaxis" (Devreotes & Zigrnond 1988). 

The osmophoresis of a spherical or ellipsoidal vesicle with a very thin membrane through a 
constant solute gradient has been examined theoretically in considerable detail by Anderson 
(1983, 1984). He calculated the terminal velocity of a spherical vesicle of radius a placed in an 
unbounded fluid of viscosity ~/, with a linear concentration distribution C~ (x) far away from the 
vesicle, for a quite general case. If the semipermeable vesicle is sufficiently small that the effects 
of inertia and the convection of solute species are negligible, its velocity U t°> is related to the uniform 
concentration gradient VC~ by the expression ( )l 

U (°) = -½aLpRT 1 + ~ + 2 + 102 VC~, 

with dimensionless parameters 

and 

[3] 

)~ = r l L p ,  [4C] 
a 

where D and D are the solute diffusion coefficients inside and outside the vesicle, respectively, C 
is the average internal concentration of solute and x0 denotes the position of the vesicle center. For 
most physically realistic systems, the last term in the parentheses in [3] is orders of magnitude 
smaller than the other terms and may be safely neglected (Anderson 1983). The van't Hoff 
expression [2] was used in deriving [3]; if it is not valid, then RT must be replaced by OII/OC, 
evaluated at C~(x0) in [3] and [4a] and at • in [4b]. 

Ignoring the ;t term, two extreme cases of [3] give different mechanisms for the movement of the 
vesicle. At small aLp or low solute concentration (g + r /2  <~ 1), U ~°) ~-½aLpRTVC~o and the 
velocity is determined solely by the vesicle's properties and the osmotic gradient. However, at large 
alp or high solute concentration (g + x/2 >> 1), U ~°) ~ - (1  + 2g/x)- lDV In Coo and the velocity 
becomes independent of the physical properties of the vesicle (membrane). Equation [3] shows that 
the vesicle always moves toward regions of lower Coo, no matter what the relative values of Coo 
and ~' are; i.e. there exists no equilibrium position as long as VC~ is non-zero. Loading the inside 
of the vesicle with solute has a retarding effect on its velocity. 

In real situations of osmophoresis, vesicles are not isolated and will move in the presence of 
neighboring vesicles and/or boundaries. For example, the presentation of immune cells (such as 
phagocytes) moving in chemotactic response to the specified gradients released by various invading 
pathogens to reach a target in the tissue matrix (such as on the lung surface) requires cell-target 
and cell-cell contact (Charnick & Lauffenburger 1990). Also, the most commonly used exper- 
imental assay for bacterial chemotaxis is the capillary assay, in which cellular transport due to 
chemokinetic effects occurs in capillary tubes (Berg & Turner 1990). Using a method of reflections, 
Anderson (1986) analyzed osmophoretic motions of a spherical vesicle with x = g = 2 = 0 in the 
proximity of another identical vesicle and along the axis of a long circular pore. Corrections to 
[3] due to the presence of another vesicle or the pore wall were determined in a power series of 
1/r12 up to O(r~6), where r~ is the center-to-center distance between the vesicles or the distance 
of the vesicle center from the wall. Anderson's (1986) results illustrate that the characteristics of 
the particle-interaction and boundary effects on osmophoresis are quite different from those for 

alp R TC~ (x0) [4a] 
•= D ' 

a l p  R TC [4b] 
g =  D 
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sedimentation (Happel & Brenner 1983) and other "phoretic" motions such as electrophoresis 
(Keh & Anderson 1985; Chen & Keh 1988). 

For the case of two vesicles undergoing osmophoresis with a large to moderate separation, the 
power-series results from one or two reflections describe the particle interactions adequately. 
However, when the vesicles are closer together, higher order interactions become significant and 
the leading terms in the asymptotic solution result in a poor description of the particle-interaction 
effect. The object of this paper is to obtain an exact solution to the quasisteady problem of 
osmophoresis of two arbitrarily oriented spherical vesicles. The vesicles may have different 
semipermeable membranes, hold arbitrary solutes and possess unequal sizes. The undisturbed 
solute concentration gradient is constant over length scales comparable to their center-to-center 
spacing. The conservative equations for the solute species and fluid momentum applicable to the 
system are solved by using spherical bipolar coordinates and the fluid streamlines inside and outside 
the vesicles for various axisymmetric cases are presented. Our numerical results for the vesicle 
velocities compare favorably with the formulas generated analytically from the method of 
reflections. It is found that the vesicle interactions in osmophoresis can be significant and peculiar 
when the vesicles are almost in contact. The two-vesicle interactions are also applied to a theory 
of concentration effects on transport properties in dilute suspensions to obtain the effect of the 
vesicle volume fraction on the mean osmophoretic velocity in a bounded dispersion of vesicles. 

A N A L Y S I S  F O R  T H E  O S M O P H O R E S I S  O F  T W O  V E S I C L E S  

In this work we consider the osmophoretic motion of two spherical vesicles, each is surrounded 
by a thin semipermeable membrane, as shown in figure 1. The centers of both vesicles are located 
on the z-axis. A linear concentration field Coo (x) with a uniform solute gradient Exex + Ezez (equal 
to VCo~, oriented arbitrarily with respect to the line of vesicle centers) is prescribed in the external 
fluid far away from the pair of vesicles; ex, ey and e~ are the unit vectors in the Cartesian coordinate 
system (x, y, z). The vesicles may differ in radius, in the average internal concentration of solute 
and in the hydraulic coefficient of the membrane, but are assumed to maintain their spherical shape. 
No interaction potential between vesicles is taken into consideration and gravitational effects are 
ignored. Our purpose is to determine the correction to [3] for one vesicle due to the presence of 
the other in the concentration and flow fields. 

Z 

8 

~ = 0  

- -  V C -  

Ex~ex ~ 0 = 0  

Figure 1. Geometric sketch for the osmophorcsis of two spherical vesicles. 
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To conveniently satisfy the boundary conditions at the vesicle surfaces, the spherical bipolar 
coordinate system (tp, ~, $)  with the unit vectors %, e~ and e, ,  illustrated in figure 1, is utilized. 
This coordinate system is related to the cylindrical polar coordinates (p, ~b, z) by the relation in 
any meridian plane ~b = const (Morse & Feshbach 1953; Happel & Brenner 1983): 

c sin ~p [5a] 
P = cosh ~ - cos tp 

and 

c sinh 
= , [ 5 b ]  

z cosh~ - c o s t p  

where - oo < ~ < 0% 0 ~< ~p ~< rr, and c is a characteristic length which is positive. The coordinate 
surfaces ~ = const correspond to a family of non-intersecting coaxial spheres whose centers lie 
along the z-axis. The special case ~ = 0 generates a sphere of infinite radius and represents the plane 
at z = 0. Two spheres external to each other are chosen to be ~ = ¢t (with ~t > 0) and ~ = ~2 (with 
~2 < 0), and the sphere radii at and as as well as the distances of their centers from the origin dt 
and d2 are given by 

and 

ai = c cosechl~,l [6a] 

dt = c cothl~/I, [6b] 

for i = 1 or 2. The center-to-center distance between the vesicles, r12, equals dj + d2. 
The interaction between two vesicles in the solute concentration gradient results from three 

effects: (1) each vesicle disturbs the local solute gradient experienced by the other vesicle; (2) the 
movement of each vesicle drags surrounding fluid that convects and rotates the other vesicle; (3) 
each vesicle sucks and ejects fluid causing a reverse flow that affects the motion of the other. To 
determine the drift velocities of the two vesicles, it is necessary to ascertain the solute concentration 
and fluid velocity distributions. 

Solute concentration distribution 

When the migration velocities of the two vesicles are not identical, the transport of momentum 
and solute species is inherently unsteady. However, the problem can be considered quasisteady if 
the Peclet and Reynolds numbers are small. The equation of continuity governing the concentration 
distribution C(x) for the external fluid of constant solute diffusion coefficient D is Laplace's 
equation: 

V2C = 0. [7a] 

For the internal fluids of the two vesicles, one has 

V:Ci=O, i = l  or 2, [7b] 

where Ct(x) and C:(x) are the solute concentration fields inside vesicles l and 2, respectively. 
The radius of each vesicle is much greater than the thickness of its membrane, so that ~ = ~/can 

represent both the inner and the outer membrane surfaces of vesicle i. The boundary conditions 
require that no solute be transferred across the semipermeable membrane of each vesicle and that 
the concentration field far away from the vesicles approach the undisturbed value. Thus, for the 
case of small Peclet number, 

OC~ c ~i 
= ~i: 0--~- = cosh ~ - /~  Oi (vi~ - e¢" Ui) [8a] 

OC c C~(x~) 
0~ - cosh ~ - # D (v~- e~.U~); [8b] 

and 

(p 2 + z~) ~/~ --* ~:  C --* Coo = Co + E~x + E,z; [8c] 
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for i = 1 or 2; C~ and ¢32 are the average internal concentrations of the two vesicles; D~ and De 
are the solute diffusion coefficients in the internal fluids; vi, and v¢ together with v~, and v, are the 
velocity components of the internal (inside vesicle i) and external fluids in bispherical coordinates; 
/1 is used to denote cos q~ for brevity; U~ ( = U ~ e ~ +  Ulcer) and U2 (=  Uz~e~+ Uz, e,) are the 
instantaneous osmophoretic velocities of  the vesicles to be determined. The undisturbed concen- 
tration at the y-axis has been set equal to a constant Co for convenience. Thus, the undisturbed 
concentrations at the vesicle centers are 

and 

C~(xl) = Co + E, dl = Co + E~c coth ¢1 [9a] 

and 

~Cl sinh 
= ~i: t~--~- = cosh ~ - / z  

t3C sinh 
~ cosh ~ - / . t  

for i = 1 or 2; the parameters x,. and xt are defined following [4a,b] by 

alLplRTCo~(xi) 

xl = D 

- C o ( x , ) -  (c , -  C,)], 

x , [ c  - c o ( x , )  - ( c , -  C,)]; 

xt = alLp~ R TC i [ 12b] 
Dt 

Thus, the boundary conditions for the concentration field are uncoupled from the vesicle velocities 
and the flow field. 

A general solution to Laplace's equation [7a] suitable for satisfying boundary conditions [1 la,b] 
and [8c] is (Morse & Feshbach 1953; Keh & C h e n  1989, 1990): 

C = cEx(COsh ~ -/~)1/2(1 - -  # ) 1 / 2  ~ [A n cosh(n + ½)¢ + B, sinh(n + ½)~]P~,~)cos q~ 
n = l  

oo 

+cE=(cosh ~ - #),/e ~ [.,1, cosh(n + 1)~ + B. sinh(n + ½)~]P~(#) + Co + Exp cos ~b + Ezz, 
n=0  

[13a] 

where P~ is the Legendre polynomial of  order n and the prime means differentiation with respect 
to #. Boundary condition [8c] is immediately satisfied by a solution of this form. Because the solute 
concentration is finite for any position in the interior of  each vesicle, the solution to [7b] can be 
written as 

C, = cE~(cosh ~ - ~ ) l / 2 ( 1  - -  ~ 2 ) 1 / 2  ~. Ri n exp[ -- (n + ½)1¢ I]P~,(/t)cos q~ + cEz(cosh ~ -/~),/e 

x ~ ~ .  exp[ - (n + ½)1¢ IIP,~)  + C, + Exp cos ~b + E,(z  - c coth ~,) [13b] 
n = 0  

[1 la]  

[11b] 

[12a] 

C~ (x2) = Co - Ezd2 = Co + E=c coth ¢2. [9b] 

Using [l] and its equilibrium form after the substitution of [2] (Anderson 1983), one can express 
the fluid velocity at the membrane surface of the vesicle i (i = 1 or 2) as 

= ~,: v~ = v,~ = % ' ( U , -  [1, x aie¢) [10a] 

v¢ = v~¢ = e¢ ' U i -  Lp~RT[C - C~ (xj) - ( C l -  Ct)]; [10b] 

where Lpl and Lv: are the hydraulic coefficients for the membranes of the two vesicles, and £~1 
(=D~ ey) and t l  2 (=[~2ey) are the instantaneous angular velocities of the vesicles to be determined. 
To obtain [10b], the Reynolds number and the parameter 2 defined by [4c] are assumed to be small. 
Substitution of [10b] into [8a,b] leads to 
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for i = 1 or 2. The coefficients A., B., A., B., RI., Rz . , /~ .  and/~z, in [13a,b] are to be determined 
from the boundary conditions at the vesicle surfaces. 

Utilizing the expansions, which can be derived using the generating function of the Legendre 
polynomials, 

(cosh ~ -/~)-3/2 = 2x/~ ~ e x p [ -  (n + l)l~llP~,(g) [14a] 
n = l  

and 

(cosh ~ - #)-1/2 cosh ~ - (cosh ~ -/~)-3/2 sinh z 

= x / ~  ~ exp[ - (n  +l)l~l][cosh ~ - (2n + 1)sinhl¢l]P.(#), [lab] 
n=0 

and the recurrence relations of the Legendre polynomials, one can apply [1 la,b] to [13a,b] to yield 
the following formulas for each value of  n: 

(n + 2)sinh[(n + ~)~]A.+t + (n + 2)cosh[(n + 3)~]B.+ ~ 
1 - [(2n + 1)cosh ~ sinh(n + 5)~ + sinh ~i cosh(n + ½)~]A. 

- [(2n + l)cosh ~ cosh(n + ½)~ + sinh ~ sinh(n + ½)~]B. 

+ (n - l)sinh[(n - l)~i]A._, + (n - 1)cosh[(n - 1)¢~]B._l -- 2rc, S~. 

= - 4 x / ~  exp[ - (n  + ½)l~l]sinh ~i (n  ~ l ) ,  [15a ]  

3 (n + 2)exp[-- (n + 5)I~il]R,~.+,) exp[ - (n + l)l~,l] 

[ +' 1 +' 
x sinh ~ -  ~ (2n + 1)cosh ~, Rm + (n - l)exp[ - (n - l)l~,llR._ 1 + 2 ~ ~S~. 

= 4x/~ ~,d e x p [ -  (n + l)l~J]sinh ~i (n/> 1). [15b] 

(n + 1)sinh[(n + 3)~]~,+, + (n + 1)cosh[(n + 3)~]B.+ ~ 

_ t ~  [(2n + 1)cosh ~ sinh(n + g) i+  sinh ~cosh(n + 1)~]~. 

- [(2n + 1)cosh ~ cosh(n + ½)~i + sinh ~ sinh(n + l)~,]B. 

~ - 
+ n sinh[(n - ½)~,]A-. +, + n cosh[(n - ½)~]B._, - 2 ~ x~Si. 

= 2x/~ exp[ - (n + l)J~iJ][cosh ¢ i -  (2n + 1)sinhl¢,l] (n/> 0) [15c] 

and 

where 

(n + 1)exp[- (n + ~)J¢il]/~,~. + 1)+ exp[ -  (n + ½)l~,l][sinhl~,l - (2n + 1)cosh ¢i]R~. 

+ n exp [ -  (n l - 2~iSt. - 0 1 ¢ , I ] R , ~ . _  ,~ + 

-2.v,~,!', exp[-(n + ½)l~,l][cosh ~,-  (2n + 1)sinhl~,l] (n/> 0), 
IGI 

[15d] 

Sm = cosh[(n + 1)~,]A. + sinh[(n + ½)~,]B. - exp[ - (n  + ½)I~,I]R~, [16a] 

~ .  = cosh[(n + ½)¢i]/T. + sinh[(n + ½)~i]B. - exp[ - (n  + 1)l~l]K~. [16b] 

and i = 1 or 2. Equations [15a.b] represent a group of infinite coupled algebraic equations for the 
unknown coefficients A., B.. R1. and R2., and [15c,d] represent a group of  similar equations for 
the unknown coefficients A., B.,/~1. and/~2.. Since these coefficients should individually approach 
zero as n ~ oo for the concentration field [13a,b] to remain bounded, they can be determined by 
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solving the first m sets of the four recurrence relations [15a,b] or [15c,d] with the convention 
A0 = B0 = Ri0 = R20 = 0 and /T_I = B_I = -~(-l) =/~2(-1) = 0, provided that m is sufficiently large 
that all Am+l, Br~+l, Rl(m+l), R2(m+l), Am, Bin,/~lm and -~z~ are negligible. 

Fluid velocity distribution 
Having obtained the solution for the solute concentration field, we can now proceed to find the 

fluid velocity distribution. Due to the low Reynolds numbers encountered in osmophoretic 
motions, the Stokes equations apply for the quasisteady fluid motion outside (and also inside) the 
vesicles: 

~/V2v - Vp = 0 [17a] 

and 

V.v = 0, [17b] 

where v(x) is the fluid velocity field for the external flow, and p(x) is the corresponding pressure 
distribution. The boundary conditions for the velocity field at the membrane surfaces of the two 
vesicles are given by [10a,b], in which the concentration distributions C and C~ are given by [13a,b] 
with coefficients determined from [15a-d]. Since the fluid is motionless far away from the vesicles, 
we have 

(p2 + z2)1/2 ~ oo: v - ,  0. [18] 

Because the vesicles are freely suspended in the fluid, the net force and net torque exerted by 
the fluid on the membrane surface of each vesicle must vanish: 

Fi = - f f s  e~ ._n_ dS~ = 0 [19a] 
i 

v, -- ~(V2 - Vo)sin 

and 

Ti = I I  aie¢ x (e¢.~=) d S  i = 0, [19b] 
Jds i 

where ~_ is the fluid stress tensor, Si denotes the surface of vesicle i, and i = 1 or 2. The translational 
velocit~s UI and U2 as well as the angular velocities l)l and ~'~2 c a n  be evaluated by satisfying 
constraints [19a,b] after solving [17a,b], [10a,b] and [18]. Using the divergence theorem to convert 
the surface integrals in [19a,b] to volume integrals and applying the fact that 

V 'n  = 0 [20] 

and the symmetry of_~ in Stoke's flow, one can show that the fluid inside a vesicle always acts no 
net force and torque on the inner surface of the vesicle. Thus, only the forces and torques exerted 
by the external fluid on the vesicles are to be considered to determine the vesicle velocities. 

Since the governing equations and boundary conditions concerning the problem of osmophoresis 
of two vesicles oriented at an arbitrary angle to the undisturbed solute gradient (Exex + E~e~) are 
linear, it is possible to decompose the problem into two subproblems: motion due to a solute 
gradient perpendicular to the line between vesicle centers (E~ = 0) and motion due to a solute 
gradient parallel to the line (Ex = 0). The net solution for the general problem can be obtained by 
adding the solutions from both subproblems vectorially. 

First, we consider the osmophoretic motion of two vesicles perpendicular to their line of centers. 
For this case, Ui-- U~xex for i = 1 and 2. A general solution of [17a] satisfying the boundary 
condition [18] is (Dean & O'Neill 1963; O'Neill 1964): 

1 
Vp = ~CC [PQI + c(V2 + V0)]cos ~b, [21a] 

1 
v~ = ~cc [ZQl + 2CWl]COS ~b, [21b] 

[21c] 
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and 

1 
P = e ?/QI COS ~. [21(t] 

In the above equations, Q~, V0, V2 and W~ are scalar auxiliary functions of p and z (or of ~ and 
~o), with the following expansion forms: 

Wt = (cosh ~ -/~)~/2(1 - #2)~a ~ [a. cosh(n + ½)~ + b. sinh(n + ½)~]P'(u), [22a] 
n=l 

Q, = (cosh ¢ - p)~/z(1 _ #2)t/2 ~ [e. cosh(n +½)¢ + d. sinh(n + ½)¢]P'(#), [22b] 
n=l 

V0 = (cosh ~ - #)1/2 ~. [e. cosh(n + ½)~ + f .  sinh(n + ½)~]P.(#) [22c] 
n=0 

and 

V2 = (cosh ~ - #)ta(1 - U  ~) ~ [g. cosh(n +½)~ + h. sinh(n + ½)~]P"(#). [22d1. 
n=2 

The coefficients a., b., c., d., e., f . ,  g. and h. remain to be determined from the equation of 
continuity [17b] and the boundary conditions [10a,b]. 

Substituting the solution for the solute concentration distributions, [13a,b], with E . - -0  and 
coefficients determined by [15a,b], as well as the expression for the fluid velocity, [21a--d] and 
[22a-d], into the boundary conditions [10a,b], it is found that the coefficients of the auxiliary 
functions must satisfy 6 algebraic recurrence formulas for each value of n >i 0. These formulas are 
lengthy, so we list them in table 1. The recurrence relations of the Legendre polynomials and 
expansions derived from generating function of the Legendre polynomials were used to expand the 
boundary conditions. 

Table 1. Reeursion formulas for the evaluation of the coefficients in [22a--d] (all formulas are valid for 
i = 1 or 2) 

t - 2  F - n - 2  - n + l  "] 
c. cosh(n + ½)¢, + d. sinh(n + i)~,-- ~ [ - ~ ~  H,, + l) + eosh ¢,H~ + ~ H~. _,)] 

:cO, 

- n  --2 --n + 1 J( ) -2~'Lp'RTExcc°sech"[2-n~3-c°sh'iS"+')+S~"+-2~l-e°sh"S"-' 1 1 ¢ , 1  
e. cosh(n + ½)~ +f .  sinh(n + ½)~i = c°sech ~i[ !n+2nl)(n+ 3 + 2)H~.+|)_(n-2n -1)nl//" - " ] 

, 
+ ~ ~,1 cfl,(Zn + 1)exp[ - (n 

+ "/8cfl'c°sech ¢i{!n + l)(n + 2)exp[-(n + ~)l 'Al-n(n - : )exp t - (n  + 3 2n - 

¢, V(n + 1)(n + 2) (n - 1)_n S ] 
+NLp'Rre:~°th¢'  L ~ ¥ g  S,~.+, 2£--~1 '("-')J 

g. cosh(n + ½ )~i + h. sinh(n + ½ )¢~ = cosech ~ [  2 n ~  H~(. _ O - 2 n ~  H~(,, + l) ] 

+ x/~c f~i eosech ~ , { 2 ~ _  1 exp[_ (n , 1 + ~)[,i,]} - ~)l~il] - ~ exp[- (n 

+"Lp, RTExccoth,, 2~_lS,.  ~, 1 ~,] 

In this table, H~ = a. cosh(n + ~)~, + b. sinh(n + ½)~i and S~ is defined by [16a]. 
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We have, up to now, 8 sets of unknowns but only 6 sets of equations. However, the equation 
of continuity has not yet been satisfied. By substituting [21a-d] and [22a-d] into [17b], two more 
relations among the coefficients result (Dean & O'Neill 1963; O'Neill 1964): 

(n + 2)c,+ l + 5c, - (n - 1)c,_ ~ - e,÷ l + 2e, - e,_ ] + (n + 2)(n + 3)g~+ t - 2(n - 1)(n + 2)g~ 

+ (n - 2)(n - 1)g._, - 2(n + 2)b.+] + 2(2n + 1)b. - 2(n - 1)b._ l = 0 [23a] 

and 

(n + 2)d.+ j + 5d. - (n - 1)d._, - f . + ,  + 2f. - f . _ ,  + (n + 2)(n + 3)h.+ ~ - 2(n - 1)(n + 2)h. 

+ (n - 2)(n - 1)h._~ - 2(n + 2)a.+, + 2(2n + 1)a. - 2(n - 1)a._~ = 0. [23b] 

Because the unknown coefficients a., b . . . . .  and h. become small with large n. simultaneous 
solution of the 6 equations in table 1 and [23a,b] for the first m sets yields 8m coefficients in terms 
of the unknown vesicle velocities U~x. U2~. fll and f~2. thereby determining the velocity and pressure 
distributions for the external fluid according to [21a-d] and [22a--d]. 

The drag force on the surface of the vesicle at ¢ = ~ and the torque on the surface about the 
vesicle center exerted by the external fluid can be expressed as (Wakiya 1967): 

F, = -2V~m/c  ~ (e. +f.)ex [24a] 
n=0 

and 

T, = -2x/~mlc ~ ~. (2n + 1 - c o t h  e,)(e. +f.)ey.  
n=0  

The corresponding results for the vesicle at ~ = ~2 are 

F2 = 2V/-2m/c ~ (e,--f.)ex 
n=0  

and 

[24b] 

[24c] 

(cosh ~ - / 0 2  0F  
v~ = c2(1 _/~)1/2 a~ " [27b] 

and 

T2 = 2x/~m/c 2 ~ (2n + 1+  coth ¢2)(e,-f~)ey. [24d1 
n = O  

Since the fluid inside a vesicle exerts no net force and torque on the inner surface of the vesicle, 
the above formulas also represent the net forces and net torques exerted by both the external and 
internal fluids on the vesicles. The vesicle velocities Ulx, Uz~, f~ and D.2 can be obtained by solving 
the four equations in the second part of [19a,b] incorporated with [24a--d]. 

We now consider the osmophoresis of two vesicles along their line of centers. For this 
axisymmetric case, Uj = U~e, and f~i = 0 for i = 1 and 2. Also, the fluid velocities inside and outside 
the vesicles are governed by the quasisteady fourth-order differential equations, 

E4~ = E2(E2~) = 0 [25a] 

g4~i---0, i = 1 or 2, [25b] 

where ~'i and ~ are the Stokes stream functions for the flow inside vesicle i and for the external 
flow, respectively. The operator E 2 assumes the following form in bispherical coordinates: 

= - #  - ~ ) d  I ( c o s h ~ - p ) ~ l  }. [26] E2 coSh,c 2 { ~ [ ( c o s h , - / t ) ~ ] + ( 1  # ~-~ 

The stream function ~' (or ~'~) is related to the velocity field v (or v~) by the formulas 

(cosh ~ -/~)2 d~f [27a] 
v¢ = c 2 a~ 
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General  solutions of  [25a,b] satisfying the boundary  condit ion [18] and the requirement o f  finite 
velocity in the interior of  each vesicle are (Stimson & Jeffery 1926; Haber  et aL 1973): 

71 = c2(cosh ~ _ #)-3/~ ~ {ti. cosh[(n - ½)~] + ~. sinh[(n - ½)¢] 
n = l  

+ ~. cosh[(n + 3)¢] + ~. sinh[(n 3 -~/2 + ~)¢]}G.+ ~ (/~) [28a] 

and 

~Pi=c2(cosh~ #)-3/2 ~" {~i. e x p [ - ( n  ~ ~ 3 -1/2 - -~)1 I ] + ~ e x p [ - ( n  +~) l~ l ]}a .+ l (# ) ,  [28b] 
n = l  

for i = 1 or 2. G;2/~(#) is the Gegenbauer  polynomial  of  order  n + 1 and degree - 1/2, which is 
related to the Legendre polynomials  via the relation 

G ;l/? (~l ) = Pn- I (I.l ) -- P. + l (~./) [29] 
2n + 1 

The coefficients a. ,  ~.,  ?., ~. ,  ~. andre, in [28a,b] are to be determined from the boundary  conditions 
[10a,b] using [14b] and the recurrence relations of  the Legendre and Gegenbauer  polynomials.  The 
procedure  is s traightforward but  tedious, and the results which consist of  8 algebraic recurrence 
formulas (4 for  ~i., ~.,  ?. and ~.; 2 for din a n d S . ;  and 2 for e2. and ~2.) for each value o f n / >  1 
are given in table 2. Since the unknown coefficients a. ,  ~ . . . . .  and }rz. become small with a large 
n, simultaneous solution o f  8 recursion equations in table 2 for the first m sets yields 8m coefficients 
in terms o f  the unknown vesicle velocities UI~ and U2~, thereby determining the Stokes stream 
functions for the fluid according to [28a,b]. 

Table 2. Recursion formulas for the evaluation of  the coefficients in [28a.b] (all formulas are valid for i = 1 or 2) 

- 2 n  - 5 
2(2n + 3) [c~. + 

cosh(n + ~)~, + b. +t sinh(n + ½)~, + ~. +t cosh(n + ~)¢, + d. +, sinh(n + ~)~] 

= - cosh ~,[~. cosh(n - ½)~, + b~ sinh(n - ~)¢, + ~. cosh(n + ~)~, + d. sinh(n + 3)~,] 

- 2 n  + 3  
- -  [a. _, cosh(n - 3)~, + ~. - ,  sinh(n - ~)~, + 6. -1 cosh(n + ½)~, + d. _~ sinh(n + t)~,] 
2(2n - 1) 

~,F -n  - - - n - l -  q 

,r - n  ~--n T 3 - - n  - 1 + ~)1~,1]} + U,,.~/2(~-S-~ cosh ¢~ exp[- (n - ½)1~,1] + exp[- (n + ½)l~,ll + cosh ¢, exp[- (n 

n (2n + 5)._ 
n(2n2n + +31) [a"+ ~ sinh(n + ~)¢, + b.+ i c o s h ( n '  +~)~,]+~-~-tc.+,sinh(n + ~)~, + d. +, cosh(n + ~)~,] 

= - 3 s i n h ~ , [ a . c o s h ( n  ½)~i+b. sinh(n ~)~i+g.  cosh(n + 3 ) ~ , + d .  sinh(n + i )  ,] 

+ cosh ~{(2n - l)[ti, sinh(n - ~)¢, + b. cosh(n - ½)~] + (2n + 3)[6. sinh(n + ~)~, + d. cosh(n + ~)¢~]} 

1 ( 2 n - 3  a ~ 2 n + l  t - (n + ) ~ - ~  [- ._  ~ sinh(n - ~)¢, + b. _, cosh(n - ~)¢,] + [~. _~ sinh(n + ½)~, + d ._ l  cosh(n + ½)¢~] 

n(n + 1)e x n ~ + 1) ~ ] -- U~2v/2 sinh ~ , { ~ - ~ -  p [ - (  - ~)1~,1] - n(n e x p [ -  (n + ~)l¢ill~ +~- 2n 

~L. exp[- (n - ½)1¢,11 + f .  expl - (n + ~)1~,11 = a. cosh[(n - ½)¢,] + ~. sinhl(n - ½)~,l + e. coshl(n + ~)¢,] + ~. sinh[(n + ~ ) ¢ , ]  

{a.(2n - ~)~xpl-(n - ½)l~,ll +Z.(2n + 3)exp[-(n + ~)t~,1]} 
I ffi I 

= - (2n - ~)(a. sinh[(n - ½)~,1 + g. cosnl(n - ½)~,l} 

- (2n + 3){~. sinh[(n + -~)~,] + d~ eosh[(n + ~)~,]} 
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By integration of the total stress on the membrane surface of each vesicle, the drag force opposing 
the axisymmetric osmophoretic motion of the vesicle at ~ = ~ is (Stimson & Jeffery 1926; Happel 
& Brenner 1983): 

F~ = -2x/~nrlc ~ (fl, + ~ + ~ + ~)e~; [30a] 
n = l  

and for the vesicle at ~ - ~2, 

F2 = - 2x/~r/c ~ (~/,, - ~ .  + e,, - a.)e.. [30b] 
n = l  

Note that the fluid inside a vesicle exerts no net force on the inner surface of the vesicle. To 
determine the instantaneous osmophoretic velocities U~ and U2~ of the vesicles, the two equations 
in the second part of [19a] incorporated with [30a,b] must be solved. 

Mobility parameters of vesicles 
Owing to the linearity of the governing equations [7a,b] and [17a,b] as well as the boundary 

conditions [1 la,b], [10a,b] and [18], the results of osmophoretic velocities for the general problem 
of two spherical vesicles oriented arbitrarily relative to the undisturbed solute gradient can be 
expressed as (for i = 1 or 2): 

2 

U, = Z [M~ p)ee + M,~")( I - ee)]'UJ °) [31a] 
j = l  

and 

where 

2 

• r(o) [31 b] a i ~ ' ~ i  = - -  Z Nue x ,.,j , 
j = l  

IT (°~J = -½ajLpjRT[1 + t~ i + ½xj]-'VC~, [32] 

which is the osmophoretic velocity of the vesicle j in the absence of the other and is computed from 
[3] taking 2 = 0. In [31a,b], e is the unit vector directed from the center of vesicle 1 toward the 
center of vesicle 2 and I is the unit dyadic. The dimensionless mobility parameters M~ ), M(n ),j and 
Nu are functions of the=relative sizes and separation distance of the vesicles as well as the system 
properties. Obviously, when the two vesicles are separated by an infinite distance, we have 

M~) - a,¢(,) 1, [33a] ii - -  " "  ii 

Mco)_M(,) 0 ( j = l , 2 ,  b u t j ~ i )  [33b] ij - - - ' - / j  = 

and 

N~ = 0 (j  = 1, 2), [33c] 

f o r i = l  or 2. 
The numerical solution of MR ), M~2 ), M~l ) and M~2 ) can be obtained by solving the problem of 

osmophoretic motion of two vesicles along their line of centers, while the solution of the remaining 
8 parameters (M,~ n) and N0) can be obtained by solving the problem of osmophoresis of two vesicles 
perpendicular to the line between centers. The detailed results will be presented in the next section. 

RESULTS AND DISCUSSION 

Using a 32-bit personal computer, the coefficients of the solute concentration distributions 
[13a,b], of the auxiliary functions for the velocity field [22a--d] and of the fluid stream functions 
[28a,b] in the present quasisteady problem have been calculated for various values of Xl, x2, gl, 
g2, a2/a~ and (a~ + a2)/rl2. For the difficult case of a large size ratio (a2/al = 5.0) and small gap 
thickness [(at +az)/rl2 = 0.995], m = 510 is sufficiently large that the (m + 1)th terms of these 
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coefficients are negligible and an increase in m does not  alter the calculated values appreciably. In 
the following we present the results o f  the fluid streamlines for the axisymmetric cases and o f  the 
vesicles' velocities for the general situations. Also, the interaction effects between pairs o f  vesicles 
will be extended to the calculation o f  the average osmophoret ic  velocity o f  small vesicles in a 
statistically homogeneous  dispersion. 

S t r e a m l i n e s  

The streamline pat tern for the fluid inside and outside a single osmophoret ic  vesicle was exhibited 
graphically by Anderson  (1983, 1986). The distort ion o f  the fluid flow due to interactions between 
two vesicles undergoing osmophoresis  along their line o f  centers is illustrated in figures 2 and 3. 

(a) 

(b) 

Ic) 

/ 8 

(d) 

f 
Figure 2. Streamlines for the axisymmetric osmophoretic 
motion of two spherical vesicles of identical radii and 
hydraulic coefficients with 2a/rt2=0.5. The left hemi- 
sphere represents vesicle 1. (a) K~ = K2 = ~] = ~2 = 0; 
(b) K t fKl=K2=0;  X 2 :5 ;  (C) K t f x ~ f K l : 0 ,  K2:5; 
(d) Kl=0, X I : x  2 : ~ : 5 .  ~/c2UI°): 1, 0.05; 2, 0.2; 3, 

0.3; 4, 0.4; 5, 0.6. 

(o) 

4 5 

(b) 

-'4 § 

Figure 3. Streamlines for the axisymmetric osmophoretic 
motion of two spherical vesicles of unequal radii with 
(a I + aa)/r12 ffi 0.6, Lpl = Lp2 and Kl ffi K2 = KI ffi K2 = 0. 
(a) a2/at =2.0, •/czUl°): 1, 0.1; 2, 0.4; 3, 0.8; 4, 2.0; 
5, 4.0. Co) a2/a ~ = 5.0, ~/cZUl°): 1, 0.5; 2, 2.0; 3, 10; 4, 

30; 5, 60. 
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In  each case, streamlines in a mer id ian  plane are depicted. Figures 2(a-d) picture the s i tuat ion when 
the two spheres have identical radii and  hydraulic coefficients and  the distance between the vesicle 

surfaces is equal to the sum of their radii. The con tour  pat tern  in figure 2(a) corresponding to the 
case of  xm = K 2 --/~1 -- t~2 -- 0 (small hydraul ic  coefficients, and /or  small solute concentra t ions  and /o r  
large solute diffusivities) shows equivalent  local recirculations in the vicinity of  each sphere and  
a symmetric global recirculation pat tern  far away from the vesicles. For  two identical vesicles 
(/~l = /~2 = /~, /~1 --'-- /~2 ----- /~ and a~ = a: = a)  with finite values of  ~c and /or  if, the streamlines will show 
a similar flow pattern.  These balanced recirculations will be distorted if the two vesicles differ in 
the values of  ~ or g, as shown in figures 2(b-d).  It  can be seen that  the spacing between streamlines 
in the vesicle with the smaller value of ~c or ~ is narrower  and the local fluid recirculation is stronger 
than  that  for the other vesicle, which shows a larger migrat ion velocity for the former vesicle. These 
results are consistent  with the predict ion of [3]. 

The si tuat ion of two spheres with Lpl---Lp2 and K~ = ~c: = / ~ 1  = / ~ 2  ~ - 0  but  unequal  radii is 
depicted in figures 3(a) and  (b), which correspond to the cases of a:/a~ = 2.0 and  a:/a~ = 5.0, 

respectively, with (am q-a2)/rl2 =0 .6 .  Again,  as expected from [3], the larger vesicle migrates 
faster. It  is noted that  the local recirculation in the vicinity of  the larger vesicle is substantial ,  
whereas it might  disappear  in the vicinity of the smaller vesicle. As the radius ratio becomes large, 

the fluid flow is domina ted  by the larger vesicle, with the smaller one in t roducing only local 
per turbat ions .  Note  that  the corresponding pat terns of the solute concent ra t ion  dis t r ibut ion 

(curves of  cons tan t  concentra t ion)  in the external fluid to figures 2(a) and  3 (~c I = r :  = t~ = 
~2 = 0) are exactly the same as those for the temperature  dis t r ibut ion (isotherms) in the case of  

Table 3. The mobility parameters M~ ), MI~ ) and N~i (i,j = 1 or 2), defined by [3 l a,b], for the osmophoretic motion of two 
identical vesicles (Lp~ = Lp2, a I = a 2 = a, r I = r2 = r, ~l = ~2 = r) with r = :~ = 0; the results of the asymptotic solution are 

evaluated from [34a,b] as a comparison 

M~ ) + M~ ) 

2a Exact Asymptotic 
- -  M~ ) = MR ) MI~ ) = M~ ) solution solution 
rl2 

0.1 0.999875 -0.000250 0.999625 0.999625 
0.2 0.999016 -0.001993 0.997023 0.997023 
0.3 0.996810 -0.006673 0.990137 0.990137 
0.4 0.993056 -0.015585 0.977471 0.977472 
0.5 0.988441 -0.029823 0.958618 0.958740 
0.6 0.985262 -0.050541 0.934721 0.935767 
0.7 0.988628 -0.080281 0.908347 0.913655 
0.8 1.009954 -0.127541 0.882413 0.902208 
0.9 1.084530 -0.225739 0.858791 0.917612 
0.95 1.185854 -0.337804 0.848050 0.942658 
0.97 1.261685 -0.417729 0.843956 0.957097 
0.98 1.316199 -0.474250 0.841949 0.965403 
0.99 1.391666 -0.551697 0.839969 0.974482 
0.995 1.44403 -0.60504 0.83899 0.979325 

2a 

r12 

Exact Asymptotic 
solution solution 

Ml~ ) = M~ ) Ml~ ) = M~ ) N,. = --Nz2 Nl2 = --N21 MI~ ) + MI~ ) Nil + Nl: Ml~ ) + MI~ ) 

0.1 1.000063 0.000125 0.571E - 8 0.197E - 8 1.000188 0.768E - 8 1.000188 
0.2 1.000500 0.001001 0.776E - 6 0.259E - 6 1.001501 0.104E - 5 1.001501 
0.3 1.001690 0 .003381  0.139E-4 0.467E- 5 1.005071 0.186E-4 1.005071 
0.4 1.004009 0 .008031  0 . 0 0 0 1 1 2  0.383E-4 1.012040 0 .000150  1.012048 
0.5 1.007826 0 .015739  0 .000590  0.000209 1.023565 0 .000799  1.023621 
0.6 1.013422 0 .027324  0 .002409  0.000915 1.040746 0 .003324  1.041047 
0.7 1.020700 0 .043613  0 . 0 0 8 4 6 6  0.003567 1.064313 0 .012033 1.065691 
0.8 1.028007 0 .065245  0 .027878  0.013483 1.093252 0 .041361 1.099072 
0.9 1.025948 0 .090861  0.09827 0.05647 1.116809 0.15474 1.142915 
0 .95  1 .004508  0 . 0 9 9 3 6 0  0.21591 0.13844 1.103868 0.35435 1.169372 
0 .97  0 . 9 7 8 6 4 3  0 .095728  0.32923 0.22351 1.074371 0.55274 1.180888 
0 .98  0 .953421  0 . 0 8 7 7 1 6  0.43318 0.30516 1.041137 0.73834 1.186854 
0 .99  0.90280 0.06491 0.63695 0.47199 0.96772 1.10884 1.192964 
0.995 0.8445 0.0318 0.8716 0.6733 0.8763 1.5449 1.196073 

M F  1 8 / 4 - - I  
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thermoeapil lary mot ion  of  two gas bubbles  in a thermal  gradient,  which were depicted by 
Meyyappan  et al. (1983). 

Vesicle velocities 

The numerical  results of  the mobil i ty  parameters  M ~  ), M!n ),j and  N o (i, j = 1 or 2), defined by 
[31a,b], for the case of  two identical vesicles with various values of x, g and  2a/r~2 are presented 
in tables 3 and  4. These values are convergent  at least to the digits as shown. The two identical 
vesicles will translate at the same velocity because M ~  'n) = M~2 'n), M ~  ,~) = M ~  '~) and  U~ °) = UI °). For  
the osmophoresis  of two vesicles along their line of centers, the results in tables 3 and  4 demonstra te  
that  the interact ion between vesicles decreases rapidly, for all values of x and if, with an increase 
in the gap between them (i.e. decreasing 2a/r~2). However,  the vesicles' interact ion can be strong 
when the surface-to-surface spacing gets close to zero. Note  that, because the reverse fluid mot ion  
against  the migra t ion of one vesicle convects the other, the two identical vesicles move slower than 
either would move in the absence of the other. This part icular  behavior  for osmophoresis is 
opposite to that  for the axisymmetric sedimentat ion (Haber  et al. 1973) or thermocapil lary 
migra t ion  (Keh & C h e n  1990) of  two fluid droplets. 

It  can be found from tables 3 and 4 that  the t ranslat ional  velocity of  the two identical vesicles 
undergoing  osmophoresis  normal  to their line of centers is a mono ton ic  increasing funct ion of  the 
separat ion parameter  2a/r~2 for all 2a/r~2 <~ 0.9. This effect, which is due to the fact that  the fluid 
recirculation generated by the movement  of one vesicle convects the other, is opposite to the 
behavior  of the osmophoret ic  mot ion  of two identical vesicles along their line of centers. On the 
other hand,  as 2a/r~ 2 >~ 0.9, the vesicle velocity decreases with increasing 2a/r~2 and  can even be 
smaller than  the value the vesicles would possess if isolated when they are almost  in contact.  Under  
this si tuation,  the strong fluid recirculation in the vicinity of one vesicle can hinder the other from 
sucking or ejecting solvent through its membrane .  Note  that the two identical vesicles rotate about  
an  axis perpendicular  to both  e and  VC~ with the same magni tude,  which increases monotonica l ly  

Table 4. The mobility parameters M~ ), M,~ n) and N~ (i,j = I or 2) for the osmophoretic motion of two identical vesicles 
with various values of ~, g and 2a/rt2 

2a 
~ - -  M/~) = M~ ) M/~ ) = M~ ) M/~ ) = M~ ) Mt~ ) = M~ ) N,I = -N22 N12 = _ N21 

r12 

0 5 0.2 0.99736 -0.00033 1.00133 0.00017 0.11E - 5 0.13E - 6  
0.4 0.98019 -0.00248 1.01061 0.00133 0 . 0 0 0 1 6  0.19E-4 
0.6 0.94426 -0.00689 1.03118 0.00456 0.00355 0.00045 
0.8 0.90436 -0.01007 1.08189 0.01054 0.04524 0.00631 
0.9 0.88445 -0.00640 1.09778 0.01246 0.17640 0.02714 
0.95 0.86894 0.00232 1.07220 0.00693 0.4270 0.0743 
0.97 0.85849 0.01026 1.02641 -0.00371 0.6987 0.1348 
0.98 0.85097 0.01656 0.9740 -0.0173 0.9721 0.2043 
0.99 0.8403 0.0260 0.8507 - 0.0544 1.571 0.383 
0.995 0.8326 0.0332 0.6825 - 0. 1146 2.357 0.666 

5 0 0.2 0.99911 0.00004 1.00045 - 0.20E - 4 0.53E - 6 -0.15E - 6 
0.4 0.99343 0.00014 1.00357 - 0.00016 0.78E - 4 -0.21E - 4 
0.6 0.98263 -0.00118 1.01165 -0.00047 0.00171 -0.00044 
0.8 0.98020 - 0.01277 1.02295 0.71E - 4 0 . 01982  -0.00484 
0.9 0.99610 -0.03400 1.02103 0.00364 0 . 0 6 6 0 9  -0.01632 
0.95 1.01230 -0.05202 1.00856 0.01007 0.1307 -0.0344 
0.97 1.01437 -0.05464 0.9967 0.0158 0.1800 - 0.0502 
0.98 1.00764 - 0.04812 0.9874 0.0206 0.2165 - 0.0634 
0.99 0.9809 -0.0216 0.9732 0.0284 0.268 - 0.085 
0.995 0.9444 0.0148 0.9626 0.0352 0.305 -0.104 

5 5 0.2 0.99803 -0.00013 1.00099 0.66E - 4 0.81E - 6 0.99E - 8 
0.4 0.98514 -0.00104 1.00794 0.00053 0.00012 0.15E -- 5 
0.6 0.95746 - 0.00343 1.02652 0.00178 0.00263 0.38E -- 4 
0.8 0.92580 -0.00796 1.05789 0.00422 0.03204 0.00050 
0.9 0.91218 --0.01020 1.06683 0.00612 0.1155 0.0015 
0.95 0.90258 --0.00763 1.05184 0.00766 0.2514 0.0023 
0.97 0.89465 --0.00234 1.0301 0.0089 0.3755 0.0016 
0.98 0.88762 0.00340 1.0089 0.0099 0.4829 0.0003 
0.99 0.8752 0.0146 0.9684 0.0121 0.675 - 0.004 
0.995 0.8642 0.0249 0.9263 0.0144 0.869 -0.011 
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with the increase in 2a/rn, but in the opposite directions. As illustrated in figure 4, the direction 
of rotation of two vesicles undergoing osmophoresis beside each other is different from that of two 
settling spheres ( G o l d m a n  et al. 1966; Happe l  & Brenner  1983) or  two electrophoret ic  particles 
(Chen & Keh  1988; Keh  & Chen 1989). 

Using a me thod  o f  reflections, Anderson  (1986) obta ined the interact ion effect for  the coupled 
osmophore t i c  mo t ion  o f  two identical spherical vesicles with r = ~ = 0 oriented arbi trar i ly with 
respect  to the solute concentra t ion  gradient.  Fo r  the axisymmetr ic  and transverse mot ions  
considered here, his results give 

.~r~) + . M ~ ) = 1 - 3 ( a y +  23 o ( a y  [34a] 
\ r l2J  \r12/ 

and 

3 / ' a '~3  3/ 'a 'X6 o ( a ~  s. 
Mt'I) + M~ ) =1 + + stm) + [34b] 

\r12,] 

The values of M~ ) + MR ) and Mt~ ) + MI~ ) calculated from the above asymptotic solution, with the 
O(r~ s) terms neglected, are also listed in table 3 for a comparison. It can be seen that the 
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asymptotic formulas [34a,b] from the method of reflections agree very well with the exact results 
as long as the vesicle surfaces are more than 2/3 of the sum of radii apart (i.e. 2a/r~2 ~ 0.6). 
However, accuracy begins to deteriorate, as expected, when the vesicles are closed together (say, 
2a/r]2 >1 0.8). Note that [34a] always underestimates the interaction effect between the vesicles and 
[34b] always overestimates the vesicles' interaction [that means both of their O(r~ s) terms must 
be negative]. 

The numerical results of the normalized migration velocities for the axisymmetric osmophoresis 
of two vesicles with equal radii and hydraulic coefficients but different values of g or g are plotted 
v s  2a/rl2 in figures 5(a,b) with ~ ,  ~2, gt and g2 as parameters. Although these results illustrate that 
the effect of interactions between the vesicles, in general, increases as the separation distance is 
decreased, they show that the osmophoretic velocities of the vesicles are not necessarily a 
monotonic increasing or decreasing function of the separation parameter 2a/r~2. When the two 
vesicles are very close to each other, the velocity of one is dramatically enhanced from the value 
it would possess if isolated, while the velocity of the other is greatly reduced from its undisturbed 
value. Note that, the latter vesicle may even change its direction of movement, as illustrated by 
curves a, b and c in figure 5(b). Also, curves d in figures 5(a,b), which correspond to low g~ and 
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high KI, ~2 and ~ ,  have a very different trend from the others. These complex results are generated 
from the combined effects of vesicle interactions on local solute concentration gradients and fluid 
velocity fields. 

In figures 6 and 7, numerical results of the normalized translational and rotational velocities, 
respectively, of two vesicles with equal radii and hydraulic coefficients but different values of 
K or g undergoing osmophoresis normal to their line of centers are plotted vs 2a/r~2 with 
Ki, Ks, gl and ~2 as parameters. It can be seen that the effect of interactions between the vesicles, 
in general, increases as the separation distance is decreased. However, as shown in figures 6(a,b), 
the translational velocities of the vesicles are not necessarily a monotonic function of 2a/r~2. For 
a given set of Kin, I<2, gl and K2, the influence of the vesicle interaction as a function of 2a/r~: on 
the osmophoretic velocities for the case of large-to-moderate vesicle separations in figures 6(a,b) 
is opposite to that in figures 5(a,b) for the osmophoresis of two vesicles parallel to their line of 
centers. 

In table 5, numerical results of M~ ), M~ ), M~ ) and M~ ) for the case of the axisymmetric 
osmophoresis of two vesicles with unequal radii are presented. Again, the vesicles' interaction is 
stronger (the magnitudes of M~2 and M21 are larger) when they are closer together. The effect 
of the interaction, in general, is far greater on the smaller of the two vesicles than on the 
larger one (M~2 increases and M2m decreases significantly with increasing a2/a~ for the case of 

Table 5. The mobility parameters MtP~), MI$ ), M ~  ) and M ~  ) for the osmophoretic motion of two vesicles with identical 
hydraulic coefficients but unequal radii 

a 2 a~ ..+- a 2 

a I r12 

2.0 0.0 0.0 0.2 0.99764 -0 .00474  -0 .00059 0.99972 
0.4 0.98183 -0 .03766 -0 .00444 0.99832 
0.6 0.94600 - 0.12683 -0 .01309 0.99943 
0.8 0.91556 -0 .32704 -0 .02768 1.02037 
0.9 0.95619 -0 .55456 -0 .04603 1.05715 
0.95 1.04951 -0 .78549 -0 .06967 1.09870 
0.97 1.13154 -0 .93990 -0 .08795 1.12748 
0.98 1.19434 -1 .04546  -0 .10153 1.14751 
0.99 1.28552 - 1.18613 -0 .12095 1.17464 
0.995 1.3507 - 1.2800 - 0.1349 1.1930 

2.0 1.25 2.5 0.2 0.99459 -0 .0067  -0 .00012 0.99952 
0.4 0.95746 -0 .0534  -0 .00096  0.99677 
0.6 0.86274 -0.01771 -0 .00304  0.99388 
0.8 0.69519 -0 .04065 -0 .00710  1.00174 
0.9 0.58168 -0 .05157 -0 .01145 1.01247 
0.95 0.53109 -0 .04177 -0 .01492 1.01415 
0.97 0.52761 -0 .02152 -0 .01572 1.00787 
0.98 0.53941 0.00010 -0.01491 0.99897 
0.99 O. 5771 0.0419 - 0.0106 0.9786 
0.995 0.6235 0.0819 -0 .0036  0.9556 

5.0 0.0 0.0 0.2 0.99537 -0 .00926  -0 .00007 0.99997 
0.4 0.96317 -0 .07402 -0 .00052  0.99986 
0.6 0.87789 -0 .25037 -0 .00129  1.00056 
0.8 0.72693 -0 .61327 -0 .00164  1.00449 
0.9 0.64655 -0 .94080 -0 .00190  1.00888 
0.95 0.63775 - 1.21474 -0 .00280 1.01277 
0.97 0.66263 - 1.38190 -0 .00375 1.01526 
0.98 0.68613 - 1.49184 -0 .00455 1.01701 
0.99 0.7404 - 1.6386 -0 .0058  1.0195 
0.995 0.7878 - 1.7377 -0 .0069  1.0212 

5.0 0.5 2.5 0.2 0.98479 -0 .00153 -0 .00003 0.99996 
0.4 0.87858 -0 .01223 -0 .00019  0.99977 
0.6 0.59175 -0 .04112  -0 .00059 1.00019 
0.8 0.03112 -0 .09559  -0 .00130  1.00312 
0.9 -0 .38854 -0 .12562  -0 .00230  1.00553 
0.95 -0 .61530 -O.11792 -0 .00383 1.00622 
0.97 -0 .66924  -0.08881 -0 .00515  1.00564 
0.98 -0 .65623 -0 .05477 -0 .00617  1.00458 
0.99 -0 .5517  0.0163 -0 .0075  1.0017 
0.995 - 0.3861 0.0907 - 0.0082 0.9981 
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rl = r2 = ~1 = ~: = 0, as shown in tables 3 and 5). The motion of  the larger vesicle slows down the 
movement of  the smaller one and can even change its direction of  migration when the gap between 
the vesicles becomes small. At the same time, the larger vesicle can be speeded up by the presence 
of  the smaller one (now the insubstantial reverse fluid motion caused by the smaller vesicle can 
assist the larger vesicle in sucking or in expelling fluid through its membrane), but this effect is weak 
for the case of  a large radius ratio. 

The numerical results of  M,~ n) and N u for the case of  the transverse osmophoresis of two vesicles 
of  unequal sizes arc presented in table 6. In general, the effect of the interaction between vesicles 
is far greater on the smaller vesicle than on the larger one. The motion of  the larger vesicle enhances 
the velocity of  the smaller one. At the same time, the larger vesicle is also speeded up by the presence 
of the smaller one when the separation distance is large or moderate. When the two vesicles are 
close together, however, the movement of  the larger vesicle can be slowed down by the smalller 
one (now the reverse fluid motion against the migration of  the smaller vesicle drags on the larger 
one). 

Table 6. The mobility parameters M,~ n) and N #  ( i , j  = 1 or 2) for the osmophoretic motion of two vesicles with identical 
hydraulic coefficients but unequal radii 

a, + a 2 M/I) M/~) M~]) M~) N,I N,2 _ N2, _ N22 
¥12 

a2/a  I = 2, r I = gl = 0, r2 = ~ = 0 

0.2 1.00119 0.00237 0.00030 1.00015 0.38E - 6 0.13E - 6 0.24E - 6 0.TIE - 6 
0.4 1.00950 0.01899 0.00239 1.00118 0.60E - 4 0.21E - 4 0.31E - 4 0.97E - 4 
0.6 1.03235 0.06446 0.00811 1.00369 0.00156 0.00062 0.00065 0.00182 
0.8 1.07924 0.15775 0.01803 1.00437 0.02452 0.01130 0.00798 0.01708 
0.9 1.11678 0.23951 0.01863 0.99439 0.10642 0.05053 0.03341 0.05243 
0.95 1.14241 0.30671 0.00439 0.97355 0.26581 0.12513 0.08616 0.10605 
0.97 1.15770 0.35003 -0 .01639 0.95246 0.43113 0.20097 0.14462 0.15548 
0.98 1.17010 0.38221 -0 .03895 0.93286 0.5881 0.2724 0.2029 0.1999 
0.99 1.19574 0.43507 -0 .08936 0.89431 0.9028 0.4154 0.3265 0.2858 
0.995 1.2309 0.4875 -0 .1542  0.8500 1.2718 0.5839 0.4799 0.3836 

a2/a  1 = 2, x I = gl = 1.25, r 2 = g2 = 2.5 

0.2 1.00271 0.00034 0.62E - 4 1.00025 0.43E - 6 0.22E - 7 0.35E - 7 0.74E - 6 
0.4 1.02171 0.00269 0.00050 1.00195 0.70E - 4 0.38E - 5 0.48E - 5 0.00010 
0.6 1.07357 0.00913 0.00167 1.00617 0.00188 0.00011 0.97E - 4 0.00192 
0.8 1.17843 0.02232 0.00370 1.00929 0.03032 0.00188 0.00117 0.01907 
0.9 1.26463 0.03384 0.00433 0.99822 0.12953 0.00755 0.00444 0.06261 
0.95 1.32856 0.04333 0.00349 0.97152 0.31223 0.01632 0.00980 0.13364 
0.97 1.36721 0.04942 0.00244 0.94344 0.4908 0.0232 0.0141 0.2013 
0.98 1.39565 0.05381 0.00169 0.91713 0.6518 0.0281 0.0172 0.2625 
0.99 1.4435 0.0604 0.0012 0.8659 0.9535 0.0337 0.0202 0.3792 
0.995 1.4930 0.0658 0.0023 0.8091 1.275 0.035 0.019 0.507 

a: /a l  = 5, x l  = g = O, Ks = g2 = 0 

0.2 1.00232 0.00463 0.37E - 4 1.00002 0.46E - 7 0.16E - 7 0.72E - 7 0.21E - 6 
0.4 1.01853 0.03705 0.00030 1.00015 0.87E - 5 0.32E - 5 0.93E - 5 0.28E - 4 
0.6 1.06278 0.12524 0.00101 1.00037 0.00030 0.00012 0.00017 0.00049 
0.8 1.15452 0.30186 0.00204 0.99961 0.00804 0.00328 0.00157 0.00394 
0.9 1.24385 0.44970 0.00102 0.99676 0.05391 0.01903 0.00626 0.01048 
0.95 1.33941 0.56655 -0.00438 0.99221 0.18195 0.05492 0.01795 0.01924 
0.97 1.42343 0.64020 -0 .01226 0.98798 0.3434 0.0940 0.0330 0.0269 
0.98 1.5029 0.6944 -0.0211 0.9842 0.5121 0.1315 0.0492 0.0337 
0.99 1.6719 0.7829 -0 .0418 0.9769 0.8750 0.2067 0.0862 0.0465 
0.995 1.8885 0.8707 -0.0691 0.9686 1.317 0.295 0.136 0.061 

a2/a  I = 5,/<l = ~l = 0.5,/£2 = /~2 = 2.5 
0.2 1.00766 0.00077 0.13E - 4 1.00002 0.65E - 7 0.48E - 8 0.13E - 7 0.21E - 6 
0.4 1.06085 0.00613 0.00010 1.00018 0 . 1 2 E - 4  0 . 9 4 E -  6 0 . 1 7 E -  5 0 . 2 8 E -  4 
0.6 1.20580 0.02073 0.00034 1.00048 0.00044 0.36E - 4 0.31E - 4 0.00050 
0.8 1.49838 0.05033 0.00071 0.99973 0.01136 0.00096 0.00032 0.00409 
0.9 1.75213 0.07625 0.00053 0.99639 0.07041 0.00566 0.00140 0.01159 
0.95 1.96892 0.09848 -0 .00073 0.99025 0.21958 0.01646 0.00414 0.02323 
0.97 2.1202 0.1137 -0 .0024  0.9839 0.3939 0.0280 0.0074 0.0347 
0.98 2.2418 0.1256 -0 .0042 0.9777 0.5665 0.0387 0.0107 0.0457 
0.99 2.4613 0.1457 -0 .0077 0.9651 0.916 0.059 0.017 0.068 
0.995 2.7002 0.1659 -0 .0113 0.9502 1.317 0.079 0.023 0.094 
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Table 7. Numerical values of {[MR ) + MR )] + 2[MI~ ) + MI~ )] - 3}o) - '  as a func- 
tion oft0 and results of a for a suspension of identical vesicles with various values 

of r and 

co r = g = 0  r = 0 ,  g = 5  r = 5 ,  g = 0  x = g = 5  

0.0 0.00000 0.00000 0.00000 0.00000 
0.1 0.00421 0.00439 0.00240 0.00250 
0.2 0.01518 0.01765 0.00295 0.01023 
0.3 0.03451 0.03975 0.00844 0.02298 
0.4 0.06063 0.07006 0.01481 0.04029 
0.5 0.09198 0.10666 0.02217 0.06084 
0.6 0.12510 0.14543 0.02937 0.08194 
0.7 0.15399 0.17881 0.03424 0.09872 
0.8 0.16826 0.19323 0.03287 0.10265 
0.9 0.1 4085 0.15017 0.01743 0.07294 
0.95 0.06849 0.03625 -0.00305 0.01710 
0.96 0.03728 -0.01635 -0.00943 -0.00435 
0 . 9 7  -0.00825 -0.09699 -0.01714 -0.03370 
0 . 9 8  -0.08215 -0.23768 -0.02667 -0.07751 
0 . 9 9  -0.23381 -0.56349 -0.03889 -0.15555 
0.995 -0.4167 - 1.0188 -0.0461 -0.2343 
1.0 - 0.974 a - 2.680 a - 0.056 ~ - 0.421 ~ 

ct = 3.58 *t = 2.32 a = 3.12 ct = 2.47 

aValues evaluated by extrapolation. 

Volume fraction dependence of osmophoretic velocity 
The interaction effects between pairs o f  vesicles can be used to determine how the average 

osmophoret ic  velocity o f  suspension is affected by the volume fraction ~ o f  the vesicles. For  a 
bounded  suspension o f  identical vesicles, the mean osmophoret ic  velocity can be expressed a s  

<U> = U(°)[1 + a~ + O(~2)1, [351 

with 

3 ( ; )  ;0 ~t = 3 - ~ ~ 1 + ~ + + 8 {[M~) + M~2 >] + 2[MI~) + Mt~2 >] - 3}to -4 dto, [36] 

where to = 2a/r12 and U (°) is the osmophoret ic  velocity o f  an isolated vesicle given by [3] taking 
2 = 0. The p r o o f  o f  [35] and [36] is given in the appendix. 

The numerical results o f  the integrand in [3@ as a function o f  to for various values o f  x and 
computed  f rom the solution o f  two-vesicle interaction parameters,  are exhibited in table 7. The 

integration can be performed numerically using these data,  and the results o f  the coefficient = arc 
presented in the last row o f  table 7. Note  that, in each case, ~t is positive and the mean osmophoret ic  
velocity becomes larger when the volume fraction o f  the vesicles is increased. This behavior,  which 
is different f rom that  for sedimentation (Batchelor 1972), electrophoresis (Anderson 1986) and 
thermocapil lary mot ion  (Anderson 1985), is understandable because the direction o f  the solvent 
flow is opposite to that o f  the vesicles' movement  and the back flow o f  solvent in the bounded  
suspension enhances the migrat ion o f  vesicles. 

The method-of-reflection solution o f  the mobility parameters given by [34a,b] can be substituted 
into [36] to obtain the following analytical formula for ,t for the case o f  x = g = 0: 

193 
~t = 4--8- [ 3 7 ]  

[The expression 0t = 121/48 obtained by Anderson (1986) is probably  in error.] Compared  with the 
exact solution given in table 7, the value of~t predicted by [37] with O(r?28) terms neglected is about  
12% larger. 

C O N C L U D I N G  R E M A R K S  

The osmophoresis  o f  two arbitrarily oriented spherical vesicles formed f rom semipermeable 
membranes  has been examined in this paper. The analysis includes two key assumptions: no  
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boundary deformation and no particle-particle interaction potential; although both phenomena 
may be important when the vesicles are in close proximity. The solute concentration and fluid 
velocity fields are solved using bipolar coordinates and the translational and angular velocities of 
the vesicles are obtained for various values of the system properties, vesicle radii and separation 
distance. The results indicate that the interaction between vesicles can be strong and peculiar when 
their gap thickness approaches zero. The translational velocity of two identical osmophoretic 
vesicles may not be a monotonic function of the separation parameter 2a/rt2, and the direction 
of  rotation of each vesicle is opposite to that for the corresponding motion driven by the 
gravitational field. The asymptotic formulas [34a,b] derived from the method of  reflections for two 
identical vesicles with x = g = 0 always give too small an effect of the axisymmetric particle 
interaction and too larger an effect of the transverse particle interaction, and the error can be 
significant when the vesicles are nearly in contact. For the case of  two vesicles with unequal radii 
or different values of x and ~, the particle interaction can be very stong and one vesicle may even 
change its direction of  movement when the vesicles are almost in contact. In general, the effect of 
the interaction is much stronger on the smaller vesicle than on the larger one. For the special case 
of two identical vesicles: both migrate with the same velocity, the magnitude of which is smaller 
for the axisymmetric osmophoresis and larger for the transverse motion (as 2a/r~2 <~ 0.98) than that 
which would exist in the absence of the other one. 

The interaction effects between pairs of vesicles have also been used to find the mean 
osmophoretic velocity in a bounded dispersion of vesicles. This mean velocity is enhanced for 
various cases as the concentration of vesicles in the suspension is increased. 

Throughout  this work we have assumed that the membranes of  the vesicles are semipermeable. 
For a membrane permeable to the solute species, the osmotic flow is only a fraction of the value 
expected for a semipermeable membrane, and [1] should be written as 

vn = Lp(tr A / - / -  AP), [38] 

where cr is a reflection coefficient. For a semipermeable membrane, tr = l; for a non-selective 
membrane, a = 0. For the osmophoresis of a spherical vesicle with an arbitrary value of tr in 
unbounded fluids, an analytical expression to correct [3] has been obtained (Anderson 1984). 

Acknowledgement--Part of this research was supported by the National Science Council of the Republic of 
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APPENDIX 

The Average Osmophoretic Velocity in a Dispersion of Vesicles 

The details of two-vesicle interactions can be used to calculate the mean osmophoretic velocity 
in a dispersion of vesicles. In this appendix, we obtain formulas for this mean velocity as a function 
of the volume fraction of the vesicles. 

For a bounded suspension, it is no longer possible to define the vesicle velocity relative to the 
distant fluid, as the vesicles are spread through the entire volume and there is no distant fluid. 
Instead, the vesicle velocity should be calculated for a reference frame in which the net vesicle and 
fluid flux is zero and VCoo is the volume average of the solute concentration gradient field over the 
entire suspension. Thus, 

v(r) dr = 0 [A. 1 a] 

and 

VC(r) dr = VC~, [A. lb] 

where V denotes the entire volume of the suspension. 
Based on a microscopic model of particle interactions in a dilute dispersion which involves both 

statistical and low Reynolds number hydrodynamic concepts (Batchelor 1972; Reed & Anderson 
1980), the mean osmophoretic velocity of a "test" vesicle (subscript t), which samples all positions 
in the bounded suspension, is given by 

(Ut~ ~ U~t°)31-N{fvV'(r)[g(r)- 1] d r - l a t L p t g T ( l  ,3ff ~t -J¢- ~ )  -1 
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Here, 

( UI °) = -½a tLp tRT  1 + gt + VC, ,  [A.3] 

which is the undisturbed osmophoretic velocity of the test vesicle, g(r) is the two-particle radial 
distribution function and N is the macroscopic concentration of the neighboring vesicles (assumed 
to have identical values of a, Lp, ~ and if). C*(r) and v*(r) are the solute concentration and fluid 
velocity fields, respectively, at position r when a single neighboring vesicle at the origin 0 moves 
due to the external concentration gradient VC, ,  which can be expressed as (Anderson 1983, 1986): 

- 3 (  7 '  r < a "  C*(r) = C + ~  g l + f f + ~  r 'VC~, [A.4a] 

and 

r > a :  C*( r )=C~(0 )+  1 + ~  1 - ~  1 + ~ + ~  r r • VC~, [A.5a] 

v*(r) = ( a ) 3 q -  3ee).U (°) . [A.5b] 

(Note that [19a] of Anderson (1983) and [12a] of Anderson (1986) contain typographical errors.) 
W(r) is a correction function needed to account for the perturbation on v* owing to the presence 
of the test vesicle, and is defined by 

( W(r)  = U,* (r) - Ul ° ~ -  v*(r) + latLptRT 1 + et + V[C*(r)  - C~ (r)], [A.6] 

where U* (r) is the actual velocity of the test vesicle located at r with respect to the origin of a single 
neighbor at 0. One can write 

U* (r) n l ' . U~O) = it 1(0) = __  + M12"t.~ , [A.7] 

with 

and 

U .  = M ~ ) e e  + M ~ ] ) ( I -  ee) [A.8a] 

MI2 -~- M~)ee + M]~)(I - ee); [A.8b] 

where subscripts 1 and 2 denote the test and neighboring vesicles, respectively, and the mobility 
parameters M(~ ), M~] ), M~ ) and M]~ ) are same as those defined by [31a]. Note that the Faxen 
correction term involving V:v*, which should have appeared in [A.2] and [A.6], equals zero, as 
computed from [A.4b] and [A.Sb]. 

To evaluate the volume integrals in [A.2], we assume that the radial distribution function has 
the following equilibrium value for rigid spheres without long-range pair potential: 

g = 0 if r < at + a [A.9a] 

and 

g = 1 + O ( N )  if r > a t + a ,  [A.gb] 

where r = Irl and O ( N )  is a term proportional to the concentration of neighbors. In other words, 
the vesicles must be sufficiently small so that Brownian motion dominates any multiparticle 
hydrodynamic interactions that might impart microscopic structure to the suspension. 

Given [A.4a,b] and [A.Sa,b] for C* and v*, [A.71 for U* and [A.ga,b] for g, the integrals in [A.2] 
are evaluated to obtain 

(Ut)  -- U~°)[1 --1- o~q~ -t- O(q~2)], [A.10] 
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with 

• --1-5~ 1+~+i )  +2~-~0,+ 1+ 

x [Ml~)+2M~)-3]+[M~)+2Mt~)l-o-~o)f~-'dco, [A.ll] 

where co = (a + at)/r and ~ = (4/3)~a3N is the volume fraction of the neighboring vesicles. 
Consider now a suspension of vesicles that have a distribution in radius and physical properties. 

A generalization of [A.10] and [A.11] results in 

(U~) = U,°)[l + ~ ~j~j + 0 ( ~ ) ] ,  [A.12] 

where 

a a = 1 -- ~ Ui ) 

x fo' {[M~) + U!°)'l _ 2Mi~)- 3] + [M~) + 2Mtt)] ~ , o , - '  do~. [A.13] 

Here the subscript i denotes vesicles having radius a~, parameters ~q and g;, undisturbed velocity 
U(0) (=lU$0)l) and volume fraction ~ ;  co =(al +a2)/rl:" subscripts 1 and 2 of the mobility 
parameters represents i and j type vesicles, respectively. 

In a suspension of identical vesicles, the mean osmophoretic velocity can be reduced from [A. 12] 
and [A.13] to [35] and [36]. 


